
Abstract 

The Discrete Period Transform (DPT) is an algorithm that maps the time domain to the period 

domain much as the Discrete Fourier Transform (DFT) maps the time domain to the frequency 

domain. The DPT can be used to process physiologically generated signals that already have a 

limited frequency range such as ECG, blood pressure, heart rate, and blood oxygen saturation 

using pulse oximeters. The DPT algorithm is designed to handle the low pulsatile amplitudes, 

noise, motion artifact, and respiratory modulation found in these signals. These physiological 

signals all have an underlying pulsatile characteristic that is quasi-stationary and exhibit semi-

ergodic behavior with non-periodic changes in period, amplitude, and wave shape. The DPT can 

be used to find the underlying pulse period and ensemble averaging can then be used to 

reconstruct a noise and artifact free signal. The DPT can separate noise and artifacts that share the 

same band of frequencies as the signal. The efficiency of a DPT incremental algorithm reduces 

the processing requirements facilitating use in low-power and portable devices.  
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1. Introduction 

 

The object of this research was to develop an algorithm that could extract signals that were highly 

contaminated by motion artifact and noise. The research specifically targeted physiological signals produced by 

the heart including, but not limited to, ECG, blood pressure, heart rate, and blood oxygen saturation using pulse 

oximeters. These signals all have an underlying pulsatile characteristic that is quasi-stationary and exhibit semi-

ergodic behavior with non-periodic changes in period, amplitude, and wave shape. Reconstruction of the 

underlying temporal waveforms, for further signal processing, is of great interest. The removal of the 

contaminating noise and artifacts, while not distorting the signal waveform, can be a challenge since often times 

the corruption is caused by signals that are in the same frequency band as the signal itself. In such cases, simple 

filtering of the data will not work. One popular way of extracting these data is to use another signal, which has a 

temporal relationship to the data, as the time frame to ensemble average the data. Ensemble averaging has been 

applied to photoplethysmographic (PPG) signals, usually employing an external cardiac “trigger” obtained from 

an ECG source (Palreddy 1997). This has also been attempted in fetal pulse oximetry, although obtaining a 

reliable fetal ECG signal generally requires use of an invasive fetal scalp electrode. 

The specific aim of this research was to develop an algorithm that could be used to determine the underlying 

periodic frequencies in data corrupted with noise and motion artifact. Once found, this information could be used 

to ensemble average the data to recover the underlying temporal signal or signals. Therefore, the algorithm 

would need to 

 

a) generate the period “trigger” from the raw data without the use of any ancillary signal; 

b) produce an accurate replica of the data including the correct wave shape and period; 

c) have a rapid enough response to track cardiac heart rate period changes in real time; 

d) recover rapidly from signal interruptions or from excessive noise or motion artifact;  

e) have sufficient computational speed so as not be the limiting factor in determining sampling rate; 
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f) require moderate storage requirements and be usable in low-power and portable devices. 

 

2. Methods 

 

2.1 Algorithm development and derivation 

  

The Discrete Fourier Transform (DFT) operates over a large frequency range, but requires extremely large 

internal data arrays in order to obtain high resolution. However, doing so usually smears the resulting frequency 

data if the data is extracted from living biological systems because such signals may not be stationary over the 

time required to acquire the data. In order to avoid the data from being smeared an algorithm with high 

resolution and small internal data arrays was required. Since the specific aim of the research was to determine the 

period of the data, it followed that frequency should be replaced with period and instead of incrementing 

frequency as with the DFT, the period should be incremented. Thus was born the Discrete Period Transform 

(DPT) (Reuss et al 2002). Our method has subsequently been used by other researchers (Yan et al, 2005). 

While the DFT has the frequency increase in a linear fashion, the DPT has the period increase in a linear 

fashion. This, in a sense, makes the two transforms complements of each other. As such, they both have 

properties that are useful in different circumstances. The DPT has bins that are separated by the data sample 

period.  If a signal is sampled at a frequency of fs and processed by the DPT, the spacing between the bins will be 

1/ fs.  The abscissa of the DPT has units of increasing period although it can also be plotted in reverse order or 

converted and plotted as frequency.  The DPT is best implemented as an incremental or sliding transform.  In 

doing so, the orthogonal complex elements forming the basis functions can be easily generated and applied as 

continuous functions in time. The sliding implementation is considered a fast form of the DPT algorithm.    

Traditional time domain techniques employed to process PPG signals include peak detection and fiducially 

point determination for cardiac period calculation, and peak-valley measurement for the pulsatile amplitude 

measurement used in blood oxygen saturation calculation.  Recently, frequency domain analysis has been used 

for determination of the fundamental cardiac frequency and, to some extent, selective removal of noise 

components based upon frequency content (Rusch et al 1996). These algorithms work in conjunction with time 

domain techniques, rather than replacing them. It is proposed that the PPG signals be processed in the period 

domain, i.e., determining the relative contributions of different periods in the signal (Bahr et al 2002).  The 

advantages of this method are improved resolution for low frequency biomedical signals, and compatibility with 

time domain algorithms.  By deriving a reliable cardiac period estimate from period domain analysis, ensemble 

averaging may proceed without an external trigger source. 

The Discrete Fourier Transform (DFT) and incremental or “sliding” DFT are fundamental algorithms 

(Rabiner et al 1975).  For sampling frequency fs the frequency “bin” k of the N-point DFT corresponds to 

frequency fk = k · fs / N Hz, and 
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is the expression for the DFT of the k
th
 frequency “bin” for the sample sequence xi…xi+N-1. At i+1, the “sliding” 

or incremental DFT is calculated as 
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To derive the Discrete Period Transform (DPT), let s = 1, 2, …, N samples be the range of periods possible in 

the sequence xi … xi+N.  Frequency fk corresponds to period sk = 1/fk = N / ( k · fs) seconds = N / k samples, so k = 

N / sk.  Substituting into (1) and (2), for the period s, 
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therefore the sliding period transform can be written as: 
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The DPT calculates the period spectrum with a resolution of 1/fs.  Over the relatively small frequency range of 

PPG signals (approx. 0.1-10Hz), this resolution is achieved with modest processing power and memory. No 

conversion from frequency is necessary for compatibility with time domain algorithms, an advantage where 

period measurements are interchanged between power spectrum and time domains.  The value of N does not 

need to be a power of two even when using the fast form of the transform. 

 

2.2 Algorithm implementation 

 

The mathematics is straight forward, but the implementation is difficult because the basis functions are 

comprised of sets of complex functions that are incommensurate and that differ one from another by the sample 

period.  The most basic form is a set of complex sinusoidal functions, an example of ten sinusoidal functions 

where the maximum period is 300 sample points is shown in Figure 1.  

 

Figure 1.  (color) Period Transform Sinusoidal Basis Functions with a maximum period of 300 samples. 
 

 

Another implementation utilizes a set of basis functions that are the incremental phase angles of the complex 

sinusoids shown in Figure 1. They are easily derived using equation (5) where s represents the period. 
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Figure 2 shows the amplitudes of the basis functions for periods from 20 sample points to 300 sample points. 

Because phase is incremented, this implementation also uses a different technique to do the correlation than the 

functions shown in Figure 1.  
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Figure 2.  (color) Period Transform Basis Functions showing the values of the multipliers for increasing period. 
 

The simplest implementation is to combine equation (3) above and either one of the two sets of basis 

functions. Using this method requires that all of the data points to be transformed are sampled and then 

processed in batch mode. If the data is lengthy, the data could be broken up into blocks and the blocks 

transformed one at a time. Calculating the basis functions in the main correlation loop forces the implementation 

to be somewhat slow but easy to develop and understand. The basis functions could be calculated before the 

correlation loop and therefore only need to be done once, thus speeding up the data processing. Using either of 

these two examples produces exactly the same result, as it should.  See Figure 3. 
 

 
Figure 3.  (color) Transform Power Spectrum from three sinusoidal signals that are incommensurate relative to each other. 
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The plot shows only half of the resulting spectrum. A second identical set exists as it does with the DFT.  

Since the input data are sinusoidal waveforms with unity amplitudes, the amplitudes of each are 0.5, because of 

the duplicity, and their respective powers are 0.25.  Since the abscissa is plotted as period, one can see the great 

resolution that this transform offers. The results using this transform will display the periods of the periodic 

signals buried in the data and suppress the noise and motion artifact. 

 Implementing the algorithm as an incremental or sliding transform, as shown in equation (4), is considerably 

more difficult. The sliding transform implementation has a signal flow diagram of a comb filter followed by a 

resonator, as does the implementation of the sliding form of the DFT (Jacobsen et al 2003, Jacobsen et al 2004). 

The comb filter is implemented by a fixed length buffer known as the recurrence buffer and the resonator by the 

correlation with the complex basis functions. 

Since the components of the DPT complex basis functions are not harmonically related, the end points of 

these functions do not always form continuous functions in the sample space as the DFT does.  This produces the 

small side lobes shown in Figure 3. However, implementing the DPT as a sliding transform wraps the basis 

functions allowing the component basis functions to become continuous in nature as shown in Figure 4. As the 

data and basis functions temporally slide by together, and the correlation is computed, basis function and data 

continuity are maintained. This is the algorithm that is used by the instrumentation described below. 
 

 
Figure 4.  (color) Complex sinusoidal basis functions showing wrapping as the number of sample points is increased.  

 

The most efficient sliding transform uses the basis functions shown in Figure 2. Assume that the section 

where the correlation is done is fixed in length and that the new data replaces the old data that was generated N 

samples earlier and saved in the recurrence buffer. To complete the sliding transform picture the updated 

contents of the recurrence buffer, that are the length of the period bin being processed, are rotated by the basis 

function for that period. The length of this buffer determines the overall resolution and once enough data has 

entered the process to fill this buffer the transform results reach a stable limit. The data is scaled by the ratio of 

the recurrence buffer size and the maximum period times the period bin k.   

 

2.3 Algorithm application 

 

Pulse oximetry (Jubran 1999) is the non-invasive measurement of arterial oxygen saturation (SpO2) based 

upon the relative absorbance of multiple light wavelengths by different species of hemoglobin. Many advances 
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have been made since its introduction in the 1970’s, primarily aimed at reducing the impact of low perfusion and 

motion on availability and reliability. The application of pulse oximetry has also been extended into new areas 

such as intrapartum fetal monitoring. 

Due to placental versus respiratory supply, the fetus functions at a much broader and lower oxygen saturation 

range, typically SpO2 = 40%-75%, with clinically significant desaturations occurring below 30% (Dildy et al 

1996).  For intrapartum monitoring of oxygen saturation via fetal pulse oximetry (FPO), the sensor must either 

be placed on the presenting part of the fetus, or through the birth canal onto the fetus torso. The design and 

calibration of these devices is substantially more difficult, since tissue conditions at the monitoring site, such as 

blood volume, are more critical at low saturations (Reuss et al 2001). 

The few commercially available fetal pulse oximeters utilize the reflectance, or backscattering, mode of 

operation, as opposed to the transmittance mode of most adult sensors. The fetal sensor must be placed trans-

cervically upon the fetal body in utero (Luttkus et al 2001). The pulse amplitude of the photoplethysmographic 

(PPG) signals is small compared to adults or neonates. Although the intrauterine placement generally eliminates 

ambient light as a source of interference, the intimate proximity of the mother’s body introduces a new problem, 

possibility of maternal modulation of the fetal signals. Maternally vascularized tissue near the fetal sensor can 

result in a strong modulation of the fetal PPG at the maternal pulse rate, potentially interfering with not only 

pulse rate detection but SpO2 calculation as well. 

Utilizing the OB Scientific™ OBS-500 Fetal Pulse Oximeter, a fetal signal database was collected to aid in 

development of pulse oximetry algorithms. The OBS-900 Fetal Oxygen Sensor was placed through the birth 

canal onto the fetal torso. Red, infrared, and dark signals from the sensor, digitized at a rate of 120 

samples/second and 21-bit resolution, were transmitted from the oximeter to a personal-computer-based Fetal 

Oximetry Platform (FOP). This software incorporates the oximeters algorithms as well as a user interface for 

graphical and textual display and analysis of the oximeter operation. The FOP permits a record of unprocessed 

signal data to be re-run with alterations to the algorithms and pulse-to-pulse comparison of the results. 

 

3. Results 
 

 Two examples that show the utility of the DPT include extracting the PPG signals from corrupted data where the 

DPT signals are masked by frequencies in the same band as the signals and the extraction of the PPG signals from a 

fetus where the maternal PPG signal dominates the data. 

 

3.1. Signal extraction from noisy data 

Figure 5 illustrates an example of weak signal data (red and infrared (IR)) in the time domain (a-c), and the 

corresponding period domain spectrum (c). The peak in (c) is the cardiac period. The fetal heart rate is 137 beats 

per minute. 
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Figure 5. Weak photoplethysmographic signals: (a) unprocessed, (b) band-passed, (c) period domain transform, (d) ensemble averaged 

 

Figure 5(a) is the unfiltered signal data from the sensor. Simple band-pass filtering results in the pulsatile 

signals shown in 5(b).  Reliable determination of the pulse rate from (b) would be difficult.  The cardiac period is 

apparent as the spectral peak in (c). The cardiac period estimates of (c) can be used to direct ensemble averaging 

to extract the fetal signal components, as shown in (d).  The period domain spectrum yields a useful cardiac 

period for rate calculation that can be tracked through all but extreme, prolonged noise. 



 

 

3.2 Signal extraction from data with maternal modulation 

A case of significant maternal modulation is illustrated in Figure 6, showing the time domain (a-b) and the 

period domain (c). The right peak in (c) is the cardiac period of the fetal heart rate (126 beats/minute), whereas 

the left peak is the maternal cardiac period (97 beats/minute heart rate). 
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Figure 6.  Maternal modulation in PPG signals: (a) unprocessed, (b) band-passed, (c) period domain transform, (d) ensemble averaged 

Again, simple band-pass filtering to obtain the pulsatile portion of each signal is shown in Figure 6(b). Errors 

in pulse rate and oxygen saturation calculations could result from processing the signals in (b). Ensemble 

averaging utilizing the cardiac period derived from period domain analysis extracts the fetal signal components 

more effectively, as illustrated in (d).  These signals will produce accurate oxygen saturation calculations. 

 

4. Discussion 

 

The PPG period domain spectrum obtained with the incremental DPT algorithm tracks relatively fast heart 

rate changes (such as heart rate accelerations and decelerations), but may not produce useful results in the 

presence of arrhythmias. Because it is used in conjunction with time domain pulse detection, the period domain 

algorithm may be disabled automatically in such circumstances.   

In the case of fetal pulse oximetry, highly irregular rhythms are relatively uncommon.  When bigeminy is 

present with regularity of pulse spacing, period tracking may “lock on” and track the normal (hemodynamically 

strong) pulses at half the actual pulse rate.  Ensemble averaging at the halved rate will still be effective, if the 

temporal relationship of normal and PVC beats is consistent. It is important that the system be able to recover 

from signal interruptions or excessive noise and motion artifact. There are many ways to accomplish this 

including restarting the system or freezing the recurrence buffer until the interference has subsided.  

 

5. Conclusion 

 

Period domain analysis utilizing an incremental DPT algorithm is an effective and efficient way to process 

periodic biomedical signals for spectral content. It provides the capabilities of frequency domain analysis, with 

certain advantages in implementation. Processing of photoplethysmographic fetal pulse oximeter signals with 

period domain analysis improves pulse rate availability and accuracy, and permits removal of interference by 

techniques such as ensemble averaging without an external noise reference. Work to be done in the future will 

include the ability to modify the length of the recurrence buffer using some measure of the signal to noise ratio. 

 


